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ABSTRACT

Graph Neural Networks (GNNs) show impressive perfor-
mance in many practical scenarios, which can be largely
attributed to their stability properties. Empirically, GNNs can
scale well on large size graphs, but this is contradicted by the
fact that existing stability bounds grow with the number of
nodes. Graphs with well-defined limits can be seen as samples
from manifolds. Hence, in this paper, we analyze the stability
properties of convolutional neural networks on manifolds to
understand the stability of GNNs on large graphs. Specif-
ically, we focus on stability to relative perturbations of the
Laplace-Beltrami operator. To start, we construct frequency
ratio threshold filters which separate the infinite-dimensional
spectrum of the Laplace-Beltrami operator. We then prove
that manifold neural networks composed of these filters are
stable to relative operator perturbations. As a product of this
analysis, we observe that manifold neural networks exhibit a
trade-off between stability and discriminability. Finally, we
illustrate our results empirically in a wireless resource alloca-
tion scenario where the transmitter-receiver pairs are assumed
to be sampled from a manifold.

Index Terms— Deep neural networks, manifolds, stability
analysis, relative perturbations

1. INTRODUCTION

Graph Neural Networks (GNNs) are convolutional neural net-
works architectures where each layer contains a bank of graph
convolutional filters followed by a point-wise nonlinearity [1–
3]. They have wide applications including but not limited to
recommendation systems [4], robot swarms [5] and wireless
communication networks [6,7]. In these applications, their im-
pressive empirical performance is largely attributed to the in-
variance and stability properties inherited from convolutions.
Akin to the translation equivariance and stability properties of
CNNs [8], GNNs have been shown to be permutation equiv-
ariant and stable to perturbations of the graph [9, 10].

Empirically, another important characteristic of GNNs is
that they scale well to very large graphs [5, 11]. However, this
is not reflected in existing stability analyses, where the stabil-
ity bounds grow with the size of the graph [9, 10]. We posit
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that tighter bounds can be derived by focusing on graph lim-
its. Leveraging the fact that graphs with arbitrary size and
well-defined limits can be seen as discrete samples from a
manifold [12, 13], in this paper we introduce manifold neural
networks (MNNs), and study their stability properties to un-
derstand the stability properties of GNNs supported on large
graphs.

The MNN is defined as a convolutional architecture on an
embedded manifold in RN , and we are interested in its stabil-
ity to relative perturbations of the Laplace-Beltrami operatorL
(Definition 1). The Laplace-Beltrami operator is a Laplacian-
like operator which is defined locally on the manifold and has a
countable real spectrum. The manifold convolution is a point-
wise operation on the spectrum of L. Since relative perturba-
tions of L result in perturbations of its spectra, the stability of
manifold neural networks depends on the stability of its con-
volutional filters. In this paper, we show that this stability is
achievable by Frequency Ratio Threshold (FRT) filters (Def-
inition 3), which separate the spectrum into finite groups of
eigenvalues. We further show that manifold neural networks
composed of FRT filters are stable to relative perturbations of
L (Theorem 1), and that there is a trade-off between the stabil-
ity and the discriminative power of MNNs.

A large number of studies have focused on the stability of
GNNs, such as [14] and [9] which consider absolute and rel-
ative graph perturbations respectively. The stability of neural
networks on three-dimensional meshes is studied in [15]. Prior
work on the stability of GNNs in the limit of large graphs in-
cludes [16], which introduces the stability of GNNs to pertur-
bations of dense random graph models called graphons; and
[17], which analyzes the stability of MNNs to absolute per-
turbations of the Laplace-Beltrami operator. In this paper, we
extend upon the results of [17] by considering relative per-
turbations, which are a more realistic perturbation model that
accounts for the structure of the Laplace-Beltrami operator.
Other related work includes transferability analyses of GNNs
considering graphons [16, 18, 19], continuous graph models
with tunable sparsity [20], and general topological spaces [12].

The rest of this paper is organized as follows. We intro-
duce the notions of manifold signals and manifold convolu-
tion in Section 2. We define FRT filters and prove the stability
of manifold neural networks composed of these filters to rela-
tive perturbations of the Laplace-Beltrami operator in Section
3. We verify our results numerically in a wireless resource



allocation scenario in Section 4. Concluding remarks are pre-
sented in Section 5.

2. PRELIMINARY DEFINITIONS

Next we introduce the concepts of a manifold signal, of the
Laplace-Beltrami operator and of a manifold convolution.
These concepts are necessary to define manifold neural net-
works and analyze their stability in Section 3.

2.1. Manifolds and manifold signals

A differentiable d-dimensional manifold M is a topological
space where each point x ∈ M has a neighborhood that is
homeomorphic to a d-dimensional Euclidean space which is
given by the tangent space TxM. We consider a simple case of
d-dimensional embedded submanifold in RN . The collections
of scalar functions which map each x ∈M to some real value,
and tangent vector functions attaching a tangent vector to each
x ∈ M, are denoted as L2(M) and L2(TM) respectively,
where TM stands for the disjoint union of all tangent spaces
onM. We restrict attention to compact and smooth manifolds.

Manifold signals are defined as data supported on the man-
ifoldM and written as scalar functions f ∈ L2(M) attaching
some real value f(x) to each point x ∈ M. For these sig-
nals, differentiation is defined as the application of an opera-
tor ∇ : L2(M) → L2(TM) called intrinsic gradient [21].
Given a signal f , ∇f(x) indicates the fastest changing di-
rection of a function at the point x, which is represented by
a vector on the tangent space of x. The adjoint of the in-
trinsic gradient operator is the intrinsic divergence, denoted
div : L2(TM) → L2(M). By composing these two opera-
tors, the Laplace-Beltrami operator is defined as

Lf = −div(∇f). (1)

Similarly to Laplacian operators in Euclidean domains, the
Laplace-Beltrami operator measures the total variation of a
function by quantifying the difference between the instanta-
neous function value at a given point, and the local average of
the function around that point.

The Laplace-Beltrami operator L is a self-adjoint and
positive-semidefinite operator by definition. Therefore, it pos-
sesses a discrete spectrum {λi,φi}i∈N+ , where λi are real
positive eigenvalues and φi are the corresponding eigenfunc-
tions. Explicitly, we can write L as

Lf =

∞∑
i=1

λi〈f,φi〉φi (2)

where the eigenvalues are ordered in increasing order as 0 <
λ1 ≤ λ2 ≤ λ3 ≤ . . . and, according to Weyl’s law [22],
grow as i2/d where d is the manifold dimension. The eigen-
functions form an orthonormal basis of L2(M) which is also
intrinsic because of the intrinsic construction of L. As such,
a square-integrable function f ∈ L2(M) can be represented

on this basis as f =
∑∞
i=1〈f,φi〉φi. The λi are interpreted as

manifold frequencies and the φi as manifold oscillation modes.

2.2. Manifold convolutions and manifold neural networks

The Laplace-Beltrami operator spectrum (2) allows defining
the spectral convolution of a manifold signal. Namely, the
spectral convolutional filter is defined as

h(L)f :=

∞∑
i=1

K−1∑
k=0

hkλ
k
i 〈f,φi〉φi, (3)

where h0, . . . , hK−1 are the filter coefficients. Projecting (3)
onto the Laplace-Beltrami operator eigenbasis, we see that the
spectral response of the manifold convolution is given by the
function h(λ) =

∑K−1
k=0 hkλk evaluated at the eigenvalues λi.

This indicates that the frequency response of the manifold con-
volution is decided solely by the coefficients hk—or, equiva-
lently, the filter function h(λ)—and by the eigenvalues of the
Laplace-Beltrami operator. Hence, we could implement the
same manifold filter on a new manifoldM′ by simply replac-
ing the Laplace-Beltrami operator L with the new operator L′,
in which case the output of the convolution (3) would be de-
termined by the spectrum of L′.

With the manifold convolution operation defined as in (3),
we define the Manifold Neural Networks (MNNs) as a cas-
cade of L layers where each layer contains a bank of manifold
convolutional filters followed by a nonlinear activation func-
tion. Letting σ denote the activation function, the l-th layer of
a L-layer CNN on manifoldM is written as

fpl (x) = σ

Fl−1∑
q=1

hpql (L)fql−1(x)

 , l = 1, 2 . . . , L, (4)

where the hpql (L) are filters mapping the q-th feature of the
l − 1-th layer to the p-th feature of the l-th layer for 1 ≤ q ≤
Fl−1 and 1 ≤ p ≤ Fl. The output features of the last layer, i.e.,
the output of the neural network, are fpL with 1 ≤ p ≤ FL. The
input features of the first layer, i.e., the input data, are fq with
1 ≤ q ≤ F0. Alternatively, we may write this manifold neural
network as a map Φ(H,L, f) where the tensor H gathers all
the learnable parameters from all layers.

3. STABILITY OF MANIFOLD NEURAL NETWORKS

To establish the stability properties of MNNs, we start by look-
ing at the effect relative perturbations have on the manifold
convolutional filters that compose their layers. Relative per-
turbations of the Laplace-Beltrami operator are defined as fol-
lows.

Definition 1 (Relative perturbations). Let L be the Laplace-
Beltrami operator of an embedded manifold M. A relative
perturbation of L is defined as

L′ = L+ EL, (5)



where the relative perturbation operator E is symmetric.

The relative perturbation model in Definition 1 describes
perturbations that scale the Laplace-Beltrami operator while
preserving its symmetries. This makes for a more realistic
perturbation model than (absolute) additive perturbations, be-
cause it respects the structure of the original Laplace-Beltrami
operator. Thinking of the manifold as a continuous graph limit,
relative perturbations can be seen as perturbing each edge pro-
portionally to its edge weight.

3.1. Frequency ratio threshold (FRT) filters

From the eigendecomposition of the Laplace-Beltrami op-
erator (1), it is clear that a perturbation of L will result in
some sort of perturbation of its spectrum. Since the spectral
convolution (3) depends directly on λi through its frequency
response h(λi), each individual eigenvalue can affect the sta-
bility of the output signal. Hence, we have to analyze the
effect of each eigenvalue perturbation individually. What
makes the problem challenging in the manifold setting is that,
though countable, the spectrum of Laplace-Beltrami operator
L is infinite-dimensional. However, it is possible to show that
the eigenvalues accumulate in certain parts the spectrum by
Weyl’s law [22]. This result is stated in Proposition 1.

Proposition 1. Let M be a d-dimensional embedded mani-
fold in RN with Laplace-Beltrami operatorL, and let {λk}∞k=1

denote the eigenvalues of L. Let C1 denote an arbitrary con-
stant. For any γ > 0, there exists N1 given by

N1 = d(C1(γ + 1)d/2 − 1)−1e (6)

such that, for all k > N1, it holds that

λk+1 − λk ≤ γλk.

Proof. This is a direct consequence of Weyl’s law [22].

Proposition 1 implies that, for large enough eigenvalues,
the distance between two consecutive eigenvalues is at most γ
times the smallest eigenvalue, where γ is positive but can be as
small as desired. Thus, we can group eigenvalues whose dif-
ferences to neighboring eigenvalues are no more than a small
scaling (measured by γ) of their own magnitude. This allows
partitioning the spectrum into a γ-separated spectrum where
the ratio between the largest neighboring eigenvalue to λk, i.e.,
λk+1, and λk itself is smaller than 1 + γ. This is described in
Definition 2. In Definition 3, we further define Frequency Ra-
tio Threshold (FRT) filters, which are filters that can separate
the spectrum in this way.

Definition 2 (γ-separated spectrum). The γ-separated spec-
trum of a Laplace-Beltrami operator L is defined as the parti-
tion Λ1(γ)∪ . . .∪ΛM (γ) such that, for k 6= l, all λi ∈ Λk(γ)
and λj ∈ Λl(γ), satisfy∣∣∣∣λiλj − 1

∣∣∣∣ > γ. (7)

0 Λ1 Λ2 Λ3 . . . . . . . . .

h(λ)

Fig. 1: A γ-FRT filter that separates the spectrum of the Lapla-
cian operator. The x-axis stands for the spectrum with each
sample representing an eigenvalue. The gray shade shows the
grouping of the eigenvalues.

Definition 3 (γ-FRT filter). The γ-frequency ratio threshold
(γ-FRT) filter is a manifold filter h(L) whose frequency re-
sponse satisfies

|h(λi)− h(λj)| ≤ ∆k, for all λi, λj ∈ Λk(γ) (8)

with ∆k ≤ ∆ for k = 1, 2 . . . ,M .

In the γ-separated spectrum, eigenvalues λi ∈ Λk and
λj ∈ Λl in different groups are at least γmin(λi, λj) apart. In
other words, the spectrum separation realized by a γ-FRT fil-
ter is such that eigenvalues are separated by relative eigenvalue
distances. Note that the γ-FRT filter achieves spectrum separa-
tion by treating eigenvalues λi, λj ∈ Λk(γ) similarly, i.e., by
giving them spectral responses whose difference is bounded.
However, the spectral responses can vary freely for eigenval-
ues in different groups as shown in Figure 1.

3.2. Manifold Neural Network Stability

In order to prove stability of MNNs, we need the following
two assumptions.

Assumption 1. The filter function h : R → R is B- integral
Lipschitz continuous and non-amplifying, i.e.,

|h(a)− h(b)| ≤ B|a− b|
(a+ b)/2

, |h(a)| < 1 for all a, b. (9)

Assumption 2 (Normalized Lipschitz activation functions).
The activation function σ is normalized Lipschitz continuous,
i.e., |σ(a)− σ(b)| ≤ |a− b|, with σ(0) = 0.

The integral Lipschitz condition can be understood as
a Lipschitz continuity condition with constant 2B/(a + b).
When a and b are close, this condition can be approximated
by |ah′(a)| ≤ B as illustrated in Figure 1. Most common
activation functions (e.g. ReLu, modulus and sigmoid) sat-
isfy Assumption 2. Under these assumptions, MNNs with
γ-FRT manifold filters are thus stable to relative perturbations
(Definition 1) as stated in Theorem 1.

Theorem 1 (Neural network stability). LetM be a manifold
with Laplace-Beltrami operator L. Let f be a manifold signal
and Φ(H,L, f) an L-layer manifold neural network on M



(4) with F0 = FL = 1 input and output features and Fl = F
features per layer for l = 1, 2, . . . , L−1. Let the filters hpql (L)
be γ-FRT [cf. Definition 3] with ∆ = πε

γ−ε+γε and B-integral
Lipschitz. Let L′ = L + EL be a relative perturbation of the
Laplace-Beltrami operator L [cf. Definition 1] where ‖E‖ =
ε ≤ γ. Under Assumptions 1 and 2, it holds that

‖Φ(H,L, f)−Φ(H,L′, f)‖

≤ LFL−1

(
2Mπ

γ − ε+ γε
+

2B

2− ε

)
ε‖f‖.

(10)

where M is the number of the partitions [cf. Definition 2].

When ε is sufficiently small (ε � min(γ, 2), the denomi-
nators on the right hand side of (10) are approximately equal
to γ and 2 respectively. Thus, MNNs with γ-FRT integral Lip-
schitz filters are stable to relative perturbations of the Laplace-
Beltrami operator. The frequency ratio threshold γ affects sta-
bility directly (by appearing in the bound in Theorem 1) and
indirectly through the partition size M . With a larger γ, more
eigenvalues will be in the same group, thus decreasing M and
improving stability. A smaller integral Lipschitz constant B
also increases stability. However, small B and large γ make
for smoother filters which in turn lead to a less discriminative
neural network. Therefore, MNNs with integral Lipschitz γ-
FRT filters exhibit a trade-off between discriminality and sta-
bility. However, this lack of discriminality can be lifted by the
pointwise nonlinearity. It can spread the information in a sig-
nal throughout the whole spectrum by creating frequency re-
sponses in frequencies that do not have responses before. The
stability bound also scales with the size of the neural network.

4. NUMERICAL EXPERIMENTS

MNNs can be seen as limits of GNNs. Hence, they cannot
be implemented in practice, but we can illustrate our results
numerically using GNNs [12]. Specifically, we consider a
wireless resource allocation scenario. We construct a wire-
less adhoc network by dropping n = 50 nodes randomly over
a range of [−50, 50]2. The fading link states can be repre-
sented by a matrix S(t), each element [S(t)]ij := sij(t) of
which represents the channel condition between node i and
node j. When considering the large-scale pathloss gain and a
random fast fading gain, the link state can be written as sij =
log(d−2.2

ij hf ), where dij is the distance between node i and j,
while hf ∼ Rayleigh(2) is the random fading. We consider
the power allocation problem among n nodes over an AWGN
channel. The goal is to maximize the sum-of-rate capacity un-
der a total power budget Pmax with p(S) = [p1, p2, . . . , pn]
denoting the power allocated to each node under channel con-
dition S and the channel rate of node i represented as ri. The

problem can be formulated as

r∗ = max
p(S)

n∑
i=1

ri (11)

s.t. ri = E

log

1 +
|hii|2pi(S)

1 +
∑
j 6=i
|sij |2pj(S)


 ,

E[1Tp] ≤ Pmax, pi(S) ∈ {0, p0}.

The nodes and links in the wireless setting can be seen
as graph nodes and edges. By formulating the adjacency ma-
trix S into a graph Laplacian, the problem can be solved with
a GNN containing the proposed γ-FRT filters. After trained
for 4000 iterations, the GNN can achieve the optimal perfor-
mance. In practice, the nodes are often deployed in dynamic
environments which would cause perturbations to the under-
lying Laplacian matrix. To model this, we add a log-normal
matrix to scale the original channel matrix S. With the same
trained GNN employed, we measure the stability by the differ-
ence of ratio of final sum-of-rate to a baseline sum-of-rate. We
can observe from Figure 2 that the difference increases with
the size of the perturbation, but is overall small. We can also
observe that GNNs with nonlinearity is more stable compared
with graph filters, as we have claimed in Section 3.2.

0.1 0.15 0.2 0.25 0.3
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

D
if

fe
re

n
c
e
 o

f 
R

a
ti

o
s

Graph Filter

GNN

Fig. 2: Sum-of-rate ratio differences on the test between the
original wireless network setting and the perturbed one.

5. CONCLUSIONS

In this paper, we introduced manifold convolutional filters
and manifold neural networks. Additionally, we defined
γ-frequency ratio threshold filters that separate the infinite-
dimensional spectrum of the Laplace-Beltrami operator into
finite groups. By treating eigenvalues that are relatively close
to each other similarly, manifold neural networks composed
of these filters were shown to be stable under relative pertur-
bations of the Laplace-Beltrami operator. Furthermore, they
exhibited a trade-off between stability and discriminability.
These results were verified empirically on a power allocation
problem in wireless adhoc networks assumed sampled from a
manifold.



A. PROOF OF THEOREM 1

Proof. Begin with the definition of spectral convolution oper-
ators in (3), we can rewrite the norm difference between two
outputs as:

‖h(L)f − h(L′)f‖

=

∥∥∥∥∥
∞∑
i=1

h(λi)〈f,φi〉φi −
∞∑
i=1

h(λ′i)〈f,φ′i〉φ′i

∥∥∥∥∥ . (12)

We denote the index of partitions that contain a single eigen-
value as a set Ks and the rest as a set Km. We can decompose
the filter function as h(λ) = h(0)(λ) +

∑
l∈Km

h(l)(λ) with

h(0)(λ) =

{
h(λ)−

∑
l∈Km

h(Cl) λ ∈ [Λk(α)]k∈Ks

0 otherwise
and

(13)

h(l)(λ) =

 h(Cl) λ ∈ [Λk(α)]k∈Ks

h(λ) λ ∈ Λl(α)
0 otherwise

(14)

whereCl is some constant in Λl(α). We can start by analyzing
the output difference of h(0)(λ). With the triangle inequality,
the norm difference can then be written as∥∥∥∥∥

∞∑
i=1

h(0)(λi)〈f,φi〉φi − h(0)(λ′i)〈f,φ′i〉φ′i

∥∥∥∥∥
=

∥∥∥∥∥
∞∑
i=1

h(0)(λi)〈f,φi〉φi − h(0)(λi)〈f,φ′i〉φ′i

+ h(0)(λi)〈f,φ′i〉φ′i − h(0)(λ′i)〈f,φ′i〉φ′i

∥∥∥∥∥ (15)

≤

∥∥∥∥∥
∞∑
i=1

h(0)(λi)〈f,φi〉φi − h(0)(λi)〈f,φ′i〉φ′i

∥∥∥∥∥
+

∥∥∥∥∥
∞∑
i=1

h(0)(λi)〈f,φ′i〉φ′i − h(0)(λ′i)〈f,φ′i〉φ′i

∥∥∥∥∥ (16)

≤

∥∥∥∥∥
∞∑
i=1

h(0)(λi)(〈f,φi〉φi − 〈f,φi〉φ′i + 〈f,φi〉φ′i

− 〈f,φ′i〉φ′i)

∥∥∥∥∥+

∥∥∥∥∥
∞∑
i=1

(h(0)(λi)− h(0)(λ′i))〈f,φ′i〉φ′i

∥∥∥∥∥
(17)

≤

∥∥∥∥∥
∞∑
i=1

h(0)(λi)〈f,φi〉(φi − φ′i)

∥∥∥∥∥
+

∥∥∥∥∥
∞∑
i=1

h(0)(λi)〈f,φi − φ′i〉φ′i

∥∥∥∥∥
+

∥∥∥∥∥
∞∑
i=1

(h(0)(λi)− h(0)(λ′i))〈f,φ′i〉φ′i

∥∥∥∥∥ (18)

Now we need to include two important lemmas to analyze the
influence on eigenvalues and eigenfunctions caused by the per-
turbation.

Lemma 1. The eigenvalues of LB operators L and perturbed
L′ = L+ EL with ‖E‖ = ε satisfy

|λi − λ′i| ≤ ε|λi|, for all i = 1, 2 . . . (19)

Proof of Lemma 1. With the assumption that L′ = L + EL,
we have

λi(L+ EL) = max
codimT≤i−1

min
u∈T,‖u‖=1

〈(L+ EL)u, u〉 (20)

= max
codimT≤i−1

min
u∈T,‖u‖=1

(〈Lu, u〉+ 〈ELu, u〉)

(21)

= λi(L) + max
codimT≤i−1

min
u∈T,‖u‖=1

〈ELu, u〉.

(22)

For the second term, we have

|〈ELu, u〉| ≤ 〈|E||L|u, u〉 =
∑
n

|λn(E)||λn(L)||ξn|2 (23)

≤ max
n
|λn(E)|

∑
n

|λn(L)||ξn|2 (24)

= ‖E‖〈|L|u, u〉 ≤ ε〈|L|u, u〉 (25)

Therefore, we have

λi(L+ EL) ≤ λi(L) + ε max
codimT≤i−1

min
u∈T,‖u‖=1

〈|S|u, u〉

= λi(L) + ε|λi(L)|, (26)
λi(L+ EL) ≥ λi(L)− ε|λi(L)|, (27)
λi(L)− ε|λi(L)| ≤ λi(L+ EL) ≤ λi(L) + ε|λi(L)|, (28)

which concludes the proof.

To measure the difference of eigenfunctions, we introduce
the Davis-Kahan sin θ theorem as follows.

Lemma 2 (Davis-Kahan sin θ Theorem). Suppose the spec-
tra of operators L and L′ are partitioned as σ

⋃
Σ and ω

⋃
Ω

respectively, with σ
⋂

Σ = ∅ and ω
⋂

Ω = ∅. Then we have

‖EL(σ)− EL′(ω)‖ ≤ π

2

‖(L′ − L)EL(σ)‖
d

≤ π

2

‖L′ − L‖
d

,

(29)
where d satisfies minx∈σ,y∈Ω |x−y| ≥ d and minx∈Σ,y∈ω |x−
y| ≥ d.

Proof of Lemma 2. See [23].

The first two terms of (18) rely on the differences of eigen-
functions, which can be derived with Davis-Kahan Theorem in
Lemma 2, the difference of eigenfunctions can be written as

‖ELφi‖ = ‖Eλiφi‖ = λi‖Eφi‖ ≤ λi‖E‖‖φi‖ ≤ λiε.
(30)



The first term in (18) then can be bounded as∥∥∥∥∥
∞∑
i=1

h(0)(λi)〈f,φi〉(φi − φ′i)

∥∥∥∥∥
≤
∞∑
i=1

|h(0)(λi)||〈f,φi〉| ‖φi − φ′i‖ ≤
Msπλε

2di
‖f‖. (31)

Because di = min{|λi−λ′i−1|, |λ′i−λi−1|, |λ′i+1−λi|, |λi+1−
λ′i|}, with Lemma 1 implied, we have

|λi − λ′i−1| ≥ |λi − (1 + ε)λi−1|, (32)
|λ′i − λi−1| ≥ |(1− ε)λi − λi−1|, (33)
|λ′i+1 − λi| ≥ |(1− ε)λi+1 − λi|, (34)
|λi+1 − λ′i| ≥ |λi+1 − (1 + ε)λi|. (35)

Combine with Lemma 1 and Definition 2, di ≥ εγ + γ − ε:

|(1− ε)λi+1 − λi| ≥ |γλi − ελi+1| (36)

= ελi

∣∣∣∣1− λi+1

λn
+
γ

ε
− 1

∣∣∣∣ (37)

≥ λi(γ − ε+ γε) (38)

This leads to the bound as∥∥∥∥∥
∞∑
i=1

h(0)(λi)〈f,φi〉(φi − φ′i)

∥∥∥∥∥ ≤ Msπε

2(γ − ε+ γε)
‖f‖,

(39)

The second term in (18) can be bounded as∥∥∥∥∥
∞∑
i=1

h(0)(λi)〈f,φi − φ′i〉φ′i

∥∥∥∥∥
≤
∞∑
i=1

|h(0)(λi)|‖φi − φ′i‖‖f‖ ≤
Msπε

2(γ − ε+ γε)
‖f‖, (40)

which similarly results from the fact that |h(0)(λ)| < 1 and
h(0)(λ) = 0 for λ ∈ [Λk(γ)]k∈Km . The number of eigenval-
ues within [Λk(γ)]k∈Ks

is denoted as Ms.
The third term in (18) is:∥∥∥∥∥
∞∑
i=1

(h(0)(λi)− h(0)(λ′i))〈f,φ′i〉φ′i

∥∥∥∥∥
2

≤
∞∑
i=1

(
Bhε|λi|

(λi + λ′i)/2

)2

〈f,φ′i〉2 ≤
(

2Bhε

2− ε

)2

‖f‖2, (41)

with the use of Lemma 1 and Assumption 1.
Then we need to analyze the output difference of h(l)(λ).∥∥∥h(l)(L)f − h(l)(L′)f

∥∥∥
≤ ‖(h(Cl) + ∆)f − (h(Cl)−∆)f‖ ≤ 2∆‖f‖, (42)

Combine the filter function, we could get

‖h(L)f − h(L′)f‖ =∥∥∥∥∥h(0)(L)f +
∑
l∈Km

h(l)(L)f − h(0)(L′)f −
∑
l∈Km

h(l)(L′)f

∥∥∥∥∥
(43)

≤ ‖h(0)(L)f − h(0)(L′)f‖+
∑
l∈Km

‖h(l)(L)f − h(l)(L′)f‖

(44)

≤ Msπε

γ − ε+ γε
‖f‖+

2Bhε

2− ε
‖f‖+ 2(M −Ms)∆‖f‖ (45)

With ∆ set as πε
γ−ε+γε , the bound became

‖h(L)f − h(L′)f‖ ≤ 2Mπε

γ − ε+ γε
‖f‖+

2B

2− ε
‖f‖. (46)

We can extend the stability result to the MNN. To bound the
output difference ‖y − y′‖, we need to write in the form of
features of the final layer

‖φ(H,L, f)− φ(H,L′, f)‖ =

FL∑
q=1

‖fqL − f
′q
L ‖. (47)

The output signal of layer l of MNN Φ(H,L, f) can be writ-
ten as

fpl = σ

Fl−1∑
q=1

hpql (L)fql−1

 . (48)

Similarly, for the perturbed L′ the corresponding MNN is
Φ(H,L′, f) the output signal can be written as

f
′p
l = σ

Fl−1∑
q=1

Hpq
l (L′)f

′q
l−1

 . (49)

The difference therefore becomes

‖fpl − f
′p
l ‖

=

∥∥∥∥∥∥σ
Fl−1∑
q=1

Hpq
l (L)fql−1

− σ
Fl−1∑
q=1

Hpq
l (L′)f

′q
l−1

∥∥∥∥∥∥ .
(50)

With the assumption that σ is normalized Lipschitz, we have

‖fpl − f
′p
l ‖

≤

∥∥∥∥∥∥
Fl−1∑
q=1

Hpq
l (L)fql−1 −Hpq

l (L′)f
′q
l−1

∥∥∥∥∥∥ (51)

≤
Fl−1∑
q=1

∥∥∥Hpq
l (L)fql−1 −Hpq

l (L′)f
′q
l−1

∥∥∥ . (52)



By adding and subtracting Hpq
l (L′)fql−1 from each term, com-

bined with the triangle inequality we can get∥∥∥Hpq
l (L)fql−1 −Hpq

l (L′)f
′q
l−1

∥∥∥
≤
∥∥Hpq

l (L)fql−1 −Hpq
l (L′)fql−1

∥∥
+
∥∥∥Hpq

l (L′)fql−1 −Hpq
l (L′)f

′q
l−1

∥∥∥ (53)

The first term can be bounded with (46) for absolute pertur-
bations. The second term can be decomposed by Cauchy-
Schwartz inequality and non-amplifying of the filter functions
as ∥∥∥fpl − f ′pl ∥∥∥ ≤ Fl−1∑

q=1

Cperε‖fql−1‖+

Fl−1∑
q=1

‖fql−1 − f
′q
l−1‖,

(54)

where we use Cper to represent the terms in (46) for simplic-
ity. To solve this recursion, we need to compute the bound for
‖fpl ‖. By normalized Lipschitz continuity of σ and the fact
that σ(0) = 0, we can get

‖fpl ‖ ≤

∥∥∥∥∥∥
Fl−1∑
q=1

hpql (L)fql−1

∥∥∥∥∥∥ ≤
Fl−1∑
q=1

‖hpql (L)‖ ‖fql−1‖

≤
Fl−1∑
q=1

‖fql−1‖ ≤
l−1∏
l′=1

Fl′
F0∑
q=1

‖fq‖. (55)

Insert this conclusion back to solve the recursion, we can get

∥∥∥fpl − f ′pl ∥∥∥ ≤ lCperε
(
l−1∏
l′=1

Fl′

)
F0∑
q=1

‖fq‖. (56)

Replace l with L we can obtain

‖φ(H,L, f)− φ(H,L′, f)‖

≤
FL∑
q=1

(
LCperε

(
L−1∏
l′=1

Fl′

)
F0∑
q=1

‖fq‖

)
. (57)

With F0 = FL = 1 and Fl = F for 1 ≤ l ≤ L − 1, then we
have

‖φ(H,L, f)− φ(H,L′, f)‖ ≤ LFL−1Cperε‖f‖, (58)

with Cper = 2Mπ
γ−ε+γε + 2B

2−ε as the terms in (46).
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